Publications
2025
Liu, D., Zhang, Y., Shi, H., Guo, Z., Rowley, G., Todd, J.D. and Zhang, X.H., 2025. DSMG-Chip: A High-Throughput Degenerate qPCR Chip for Profiling Microbial DMSP and Related Organic Sulfur Metabolic Genes in Diverse Environments. Environmental Science & Technology. https://pubs.acs.org/doi/full/10.1021/acs.est.5c10820
Seguro, I., Vikström, K., Todd, J.D., Giovannoni, S.J., García-Martín, E.E., Utting, R. and Robinson, C., 2025. Respiration rates of marine prokaryotes and implications for the in vivo INT method. Biogeosciences, 22 (21), pp.6225-6242. https://doi.org/10.5194/bg-22-6225-2025
Hawthorne, S.E., Tsola, S.L., Carrión, O., Todd, J.D. and Eyice, Ö., 2025. Active microorganisms and potential metabolic pathways mediating anaerobic degradation of DMSP in anoxic saltmarsh sediment. ISME communications, 5 (1), p.ycaf180. https://doi.org/10.1093/ismeco/ycaf180
Zhu, B., Bradbury, H.J., Marquand, T.I., Fotherby, A., Daunt, C.M., Clegg, J.A., Williams, B., Todd, J.D., Bickle, M.J., Llewellyn‐Beard, F. and Turchyn, A.V., 2025. Seasonal Influence on Subsurface Rates of Microbial Sulfate Reduction and Sulfur Isotope Fractionation in Coastal Sediments. Global Biogeochemical Cycles, 39 (6), p.e2025GB008558. https://doi.org/10.1029/2025GB008558
Li, X.J., Wang, J., Wang, H.N., Li, S., Zhou, Z., Chen, Z.H., Liu, J., Zhang, G.L., Zhang, H.H., Yang, G.P. and Todd, J.D., 2025. Water mass mixing controls methane cycling and emission in highly hydrodynamic regions of the open ocean. ISME communications, 5 (1), p.ycaf114. https://doi.org/10.1093/ismeco/ycaf114
Liu, R., He, X., Ren, G., Li, D.-W., Zhao, M., Lehtovirta-Morley, L., Todd, J.D., Zhang, X.-H. and Liu, J. (2025). Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments. Environ Microbiol , 27: e70018. https://doi.org/10.1111/1462-2920.70018
2024
Payet RD et al., (2024). Elucidation of Spartina dimethylsulfoniopropionate synthesis genes enables engineering of stress tolerant plants. Nat Commun. 15, 8568. https://doi.org/10.1038/s41467-024-51758-z
Li CY, Cao HY, Payet RD, Todd JD, Zhang YZ. (2024). Dimethylsulfoniopropionate (DMSP): from biogeochemistry to global ecological significance. Annu Rev Microbiol. https://doi.org/10.1146/annurev-micro-041222-024055.
Zhang Y et al., (2024). An S-methyltransferase that produces the climate-active gas dimethylsulfide is widespread across diverse marine bacteria. Nat Microbiol. https://doi.org/10.1038/s41564-024-01788-6.
Saha M et al., (2024). Progress and future directions for seaweed holobiont research. New Phytol. https://doi.org/10.1111/nph.20018.
Wang J et al., (2024). Alternative dimethylsulfoniopropionate biosynthesis enzymes in diverse and abundant microorganisms. Nat Microbiol. 9:1979-1992.
Liu J et al., (2024). A unique subseafloor microbiosphere in the Mariana Trench driven by episodic sedimentation. Mar Life Sci Technol. 6:168-181.
Zhou T, Wang J, Todd JD, Zhang XH, Zhang Y. (2024). Quorum sensing regulates the production of methanethiol in Vibrio harveyi. Microorganisms. 12:35.
2023
He XY et al., (2023). SAR92 clade bacteria are potentially important DMSP degraders and sources of climate-active gases in marine environments. mBIO. 4:e01467-23.
Carrión O et al., (2023). DMSOP-cleaving enzymes are diverse and widely distributed in marine microorganisms. Nat Microbiol. 8:2326-2337.
Li J, Todd JD, Yu Z. (2023). The production of dimethylsulfoniopropionate by bacteria with mmtN linked to non-ribosomal peptide synthase gene. Environ Technol. 16:1-9.
Zhu XY et al., (2023). Deep-sea Bacteroidetes from the Mariana Trench specialize in hemicellulose and pectin degradation typically associated with terrestrial systems. Microbiome. 11:175.
Li CY et al., (2023). Aerobic methylation of hydrogen sulfide to dimethylsulfide in diverse microorganisms and environments. ISME J. 17:1184-1193.
Li CY et al., (2023). Dimethylsulfoniopropionate and its catabolites are important chemical signals mediating marine microbial interactions. Trends Microbiol. 31:992-994.
Wang SY et al., (2023). A new dimethylsulfoniopropionate lyase of the cupin superfamily in marine bacteria. Environ Microbiol. 25:1238-1249.
Hopkins FE, Archer SD, Bell TG, Suntharanligam P, Todd JD. (2023). The biogeochemistry of marine dimethylsulfide. Nat Rev Earth Environ. 4:361-367.
Li CY et al., (2023). Ubiquitous occurrence of a dimethylsulfoniopropionate ABC transporter in abundant marine bacteria. ISME J. 17:579-587.
Stirrup R et al., (2023). Aminolipids elicit functional trade-offs between competitiveness and bacteriophage attachment in Ruegeria pomeroyi. ISME J. 17:315-325.
Gray E et al., (2023). Stabilisation of the RirA [4Fe–4S] cluster results in loss of iron-sensing function. Chem Sci. 14:9744-9758.
2022
Rix GD et al., (2022). Characterisation of a soil MINPP phytase with remarkable long-term stability and activity from Acinetobacter sp. PLoS One. 17:e0272015.
Liu J et al., (2022). Oceanospirillales containing the DMSP lyase DddD are key utilisers of carbon from DMSP in coastal seawater. Microbiome, 10:1-21.
Li CY et al., (2022). Mechanistic insights into the key marine dimethylsulfoniopropionate synthesis enzyme DsyB/DSYB. mLife. 1:114-130.
Peng M et al., (2022). Insights into methionine S-methylation in diverse organisms. Nat Commun. 13:2947.
Kuek FWI et al., (2022). DMSP production by coral-associated bacteria. Front Mar Sci. 9:869574.
2021
Wagstaff BA et al., (2021). Assessing the toxicity and mitigating the impact of harmful Prymnesium blooms in eutrophic waters of the Norfolk Broads. Env Sci Technol. 55:16538-16551.
Sun H et al., (2021). Spatiotemporal distribution of bacterial dimethylsulfoniopropionate producing and catabolic genes in the Changjiang Estuary. Environ Microbiol. 23:7073-7092.
Zhang Y et al., (2021). Dimethylsulfoniopropionate biosynthetic bacteria in the subseafloor sediments of the South China Sea. Front Microbiol. 12:731524.
Xue CX et al., (2021). DiTing: a pipeline to infer and compare biogeochemical pathways from metagenomic and metranscriptomic data. Front Microbiol. 12:698286.
Rix GD, Todd JD, Neal AL, Brearley CA. (2021). Improved sensitivity, accuracy and prediction provided by a high-performance liquid chromatography screen for the isolation of phytase-harbouring organisms from environmental samples. Microb Biotechnol. 14:1409-1421.
Li CY et al., (2021). A novel ATP-dependent dimethylsulfoniopropionate lyase in bacteria that releases dimethyl sulfide and acryloyl-CoA. eLife. 10:e64045.
Liu J et al., (2021). Bacterial dimethylsulfoniopropionate biosynthesis in the East China Sea. Microorganisms. 9:657.
2020
Zhong H et al., (2020). Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome. 8:78.
Zheng Y et al., (2020). Bacteria are important dimethylsulfoniopropionate producers in marine aphotic and high-pressure environments. Nat Commun. 11:4658.
Xue CX et al., (2020). Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on Earth. Microorganisms. 8:1309.
Sun H et al., (2020). DMSP-producing bacteria are more abundant in the surface microlayer than subsurface seawater of the East China Sea. Microb Ecol. 80:350-365.
Song D et al., (2020). Metagenomic insights into the cycling of dimethylsulfoniopropionate and related molecules in the Eastern China marginal seas. Front Microbiol. 11:157.
2019
Liu J et al., (2019). Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome. 7:47.
Wilkening JV et al., (2019). The production and fate of volatile organosulfur compounds in sulfidic and ferruginous sediment. JGR Biogeosciences. 124:3390-3402.
Williams BT et al., (2019). Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat Microbiol. 4:1815-1825.
Williams BT & Todd JD (2019). A day in the life of marine sulfonates. Nat Microbiol. 4:1610-1611.
Zhang XH et al., (2019). Biogenic production of DMSP and its degradation to DMS – their roles in the global sulfur cycle. Sci China Life Sci. 62:1296-1319.
Pellicer Martinez MT et al., (2019). Mechanisms of iron- and O2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA. eLife. 8:e47804.
Gallardo-Benavente C et al., (2019). Biosynthesis of CdS quantum dots mediated by volatile sulfur compounds released by Antarctic Pseudomonas fragi. Front Microbiol. 10:1866.
Carrión O et al., (2019). Methanethiol and dimethylsulfide cycling in Stiffkey saltmarsh. Front Microbiol. 10:1040.
Peng M et al., (2019). Structure-function analysis indicates that an active-site water molecule participates in dimethylsulfoniopropionate cleavage by DddK. Appl Environ Microbiol. 85:e03127-18.
Shao X et al., (2019). Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol Microbiol. 111:1057-1073.
2018
Liu J et al., (2018). Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front Microbiol. 9:3206.
Howat AM et al., (2018). Comparative genomics and mutational analysis reveals a novel XoxF-utilizing methylotroph in the Roseobacter group isolated from the marine environments. Front Microbiol. 9:766.
Curson ARJ et al., (2018). DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat Microbiol. 4:430-439.
Eyice Ö et al., (2018). Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME J. 12:145-160
2017
Li CY et al., (2017). Mechanistic insight into dimethylsulfoniopropionate lyase DddY, a new member of the cupin superfamily. J Mol Biol. 429:3850-3862.
Carrión O et al., (2017). Methanethiol-dependent dimethylsulfide production in soil environments. ISME J. 11:2379-2390.
Wang P et al., (2017). Mechanistic insight intro acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol Microbiol. 105:674-688.
Schnicker NJ, De Silva SM, Todd JD, Dey M. (2017). Structural and biochemical insights into dimethylsulfoniopropionate cleavage by cofactor-bound DddK from the prolific marine bacterium Pelagibacter. Biochemistry. 56:2873-2885.
Curson ARJ et al., (2017). Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat Microbiol. 2:17009.
Pellicer Martinez MT et al., (2017). Sensing iron availability via the fragile [4Fe–4S] cluster of the bacterial transcriptional repressor RirA. Chem Sci. 8:8451-8463.
2016
Sun J et al., (2016). The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat Microbiol. 1:16065.
Johnston AWB, Green RT, Todd JD. (2016). Enzymatic breakage of dimethylsulfoniopropionate -a signature molecule for life at sea. Curr Opin Chem Biol. 31:58-65.
2015
Brummett AE, Schnicker NJ, Crider A, Todd JD, Dey M. (2015). Biochemical, kinetic, and spectroscopic characterization of Ruegeria pomeroyi DddW -a mononuclear iron-dependent DMSP lyase. PLoS One. 10:e0127288.
Carrión O et al., (2015). A novel dimethylsulfide-producing pathway in bacteria is abundant in soil environments. Nat Commun. 6:6579.
2014
Curson ARJ et al., (2014). Screening of metagenomic and genomic libraries reveals three classes of bacterial enzymes that overcome the toxicity of acrylate. PLoS One. 9:e97660.
2013
Green RT, Todd JD, Johnston AWB. (2013). Manganese uptake in marine bacteria; the novel MntX transporter is widespread in Roseobacters, Vibrios, Alteromonadales and the SAR11 and SAR116 clades. ISME J. 7:581-591.
2012
Curson ARJ, Fowler EK, Dickens S, Johnston AWB, Todd JD. (2012). Multiple DMSP lyases in the γ-proteobacterium Oceanimonas doudoroffii. Biogeochemistry. 110:109–119.
Sun L, Curson ARJ, Todd JD, Johnston AWB. (2012). Diversity of DMSP transport in marine bacteria, revealed by genetic analyses. Biogeochemistry. 110:121-130.
Todd JD, Curson ARJ, Sullivan MJ, Kirkwood M, Johnston AWB. (2012). The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. PLoS One. 7:e35947.
Peng M et al., (2012). Phylogenetic diversity of the dddP gene for dimethylsulfoniopropionate-dependent dimethyl sulfide synthesis in mangrove soils. Can J Microbiol. 58:523-530.
Todd JD, Kirkwood M, Newton-Payne S, Johnston AWB. (2012). DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 6:223-226.
Johnston AWB, Todd JD, Curson ARJ. (2012). Microbial origins and consequences of dimethyl sulfide. Microbe. 7:181-185.
2011
Curson ARJ, Todd JD, Sullivan MJ, Johnston AWB. (2011). Catabolism of dimethylsulfoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol. 9:849-859.
Curson ARJ, Sullivan MJ, Todd JD, Johnston AWB. (2011). DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria. ISME J. 5:1191-1200.
White GF et al., (2011). Heme binding to the second, lower-affinity site of the global iron regulator Irr from Rhizobium leguminosarum promotes oligomerization. FEBS J. 278:2011-2021.
Todd JD et al., (2011). DddQ, a novel, cupin-containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ Microbiol. 13:427-438.
Sullivan MJ et al., (2011). Unusual regulation of a leaderless operon involved in the catabolism of dimethylsulfoniopropionate in Rhodobacter sphaeroides. PLoS One. 6:e15972.
2010
Kirkwood M, Le Brun NE, Todd JD, Johnston AWB. (2010). The dddP gene of Roseovarius nubinhibens encodes a novel lyase that cleaves dimethylsulfoniopropionate intro acrylate plus dimethyl sulfide. Microbiology. 156:1900-1906.
Singleton C et al., (2010). Heme-responsive DNA binding by the global iron regulator Irr from Rhizobium leguminosarum. J Biol Chem. 285:16023-16031.
Todd JD et al., (2010). Molecular dissection of bacterial acrylate catabolism -unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ Microbiol. 12:327-343.
Kirkwood M, Todd JD, Rypien KL, Johnston AWB. (2010). The opportunistic coral pathogen Aspergillus sydowii contains dddP and makes dimethyl sulfide from dimethylsulfoniopropionate. ISME J. 4:147-150.
Curson ARJ, Sullivan MJ, Todd JD, Johnston AWB. (2010). Identification of genes for dimethyl sulfide production in bacteria in the gut of Atlantic Herring (Clupea harengus). ISME J. 4:144-146.
2009
Todd JD, Curson ARJ, Dupont DL, Nicholson P, Johnston AWB. (2009). The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol. 11:1376-1385.
2008
Johnston AWB et al., (2008). Molecular diversity of bacterial production of the climate-changing gas, dimethyl sulphide, a molecule that impinges on local and global symbioses. J Exp Bot. 59:1059-1067.
Curson ARJ, Rogers R, Todd JD, Brearley CA, Johnston AWB (2008). Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. Environ Microbiol. 10:757-767.
2007
Johnston AWB et al., (2007). Living without Fur: the subtlety and complexity of iron-responsive gene regulation in the symbiotic bacterium Rhizobium and other α-proteobacteria. Biometals. 20:501-511.
Todd JD et al., (2007). Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science. 315:666-669.
2006
Rodionov DA, Gelfand MS, Todd JD, Curson ARJ, Johnston AWB. (2006). Computational reconstruction of iron- and manganese-responsive transcriptional networks in α-proteobacteria. PLoS Comput Biol. 2:e163.
Todd JD, Sawers G, Rodionov DA, Johnston AWB. (2006). The Rhizobium leguminosarum regulator IrrA affects the transcription of a wide range of genes in response to Fe availability. Mol Genet Genomics. 275:564-577.
Young JPW et al., (2006). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7:R34.
2005
Díaz-Mireles E et al., (2005). The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence. Microbiology. 151:4071-4078.
Todd JD, Sawers G, Johnston AWB. (2005). Proteomics analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae. Mol Genet Genomics. 273:197-206.
2004
Yeoman KH, Curson ARJ, Todd JD, Sawers G, Johnston AWB. (2004). Evidence that the Rhizobium regulatory protein RirA binds to cis-acting iron-responsive operators (IROs) at promoters of some Fe-regulated genes. Microbiology. 150:4065-4074.
Díaz-Mireles E et al., (2004). The Fur-like protein Mur of Rhizobium leguminosarum is a Mn2+-responsive transcriptional regulator. Microbiology. 150:1447-1456.
2003
Wexler M et al., (2003). Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. Microbiology. 149:1357-1365.
2002
Todd JD et al., (2002). RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology. 148:4059-4071.